2022 年度广东省科学技术奖公示表 (科技进步二等奖)

项目名称	几种常见神经系统重大疾病新机制及创新药物干预研究
	单位1深圳市疾病预防控制中心
主要完成单位	单位2 华中科技大学
	单位3暨南大学
主要完成人 (职称、完成单 位、工作单位)	1. 杨细飞 研究员 深圳市疾病预防控制中心 项目负责人
	2. 刘恭平 教授 华中科技大学 主要负责了 tau 蛋白病理损伤的分子机制研究
	3. 张在军 研究员 暨南大学 主要负责新药研发
	4. 刘建军 研究员 深圳市疾病预防控制中心 协助项目负责人实施本项目的研究
	5. 王建枝 教授 华中科技大学 主要负责 tau 蛋白病理损伤的分子
	6. 许本洪 副研究员 深圳市疾病预防控制中心 主要负责完成了蛋白质组学研究
	7. 聂露琳 助理研究员 深圳市疾病预防控制中心 主要负责 AD 药物筛选
	8. 许华 教授 暨南大学 负责低剂量铜暴露的神经毒性研究
	9. 余海涛 副教授 深圳市疾病预防控制中心 负责线粒体机制研究
	10. 陈重阳 助理研究员 深圳市疾病预防控制中心 协助开展自噬障碍研究
	11. 何开武 助理研究员 深圳市疾病预防控制中心 负责 AD 学习记忆及分子机制
	12. 黄新凤 副主任技师 深圳市疾病预防控制中心 负责完成了动物行为学研究
	13. 张泽娜 主管技师 深圳市疾病预防控制中心 主要负责协助项目申报及总结
	14. 周丽 主任技师 深圳市疾病预防控制中心 主要负责负责动物相关实验
项目简介	阿尔茨海默病(AD)、帕金森病(PD)、中风,是继心血管系统疾病、肿瘤
	后第三大威胁人类健康的一类神经系统重大疾病,尽管近年来国内外在该领域取得
	一些重大进展,但由于大脑解剖结构特殊及功能高度复杂,有关这类疾病的发病机
	制尚未阐明, 同时缺乏精准的改变疾病进程的药物。鉴于此, 本项目采用病毒介导
	的基因沉默 /过表达、分子相互作用分析、蛋白质组学、小分子成像、神经行为学等
	多种技术及手段,深入、系统地研究了 tau 聚积导致的突触损伤新分子机制,揭示了
	AD环境危害因素铜暴露可通过致线粒体损伤促进AD特征性病理改变及认知功能损
	伤,同时探索了中药活性成分蝙蝠葛碱、川芎嗪,以及研发的创新潜力药物 TBN 和
	MN-08 对疾病的治疗效果和分子机制,相关研究成果发表在国际权威期刊,并获得
	多项国际、国内发明专利。在本项目实施过程中,还注重社会服务方面的需求,建

立了可用于研究神经系统重大疾病(包括 AD 、 PD、中风等)机制研究和药物研 发相关的多个技术平台,如多组学技术平台(转录组学、蛋白质组学、代谢组学等)、 分子成像(如双光子成像、质谱成像)、神经行为学、神经药理毒理学等多个技术 平台,并已被多家机构使用。 论文 1: STAT3 ameliorates cognitive deficits by positively regulating the expression of NMDARs in a mouse model of FTDP-17. Signal Transduct Target Ther. 2020;5(1):295. 论文 2: Melatonin ameliorates cognitive deficits through improving mitophagy in a mouse model of Alzheimer's disease. J Pineal Res. 2021 Dec;71(4):e12774. doi: 10.1111/jpi.12774. Epub 2021 Oct 15. 论文 3: Platelet biomarkers for a descending cognitive function: A proteomic approach. 代表性论文 Aging Cell. 2021; 20(5):e13358. 专著目录 论文 4: Therapeutic efficacy of novel memantine nitrate MN-08 in animal models of Alzheimer's disease. Aging Cell. 2021 Jun;20(6):e13371. doi: 10.1111/acel.13371. Epub 2021 May 6. 论文 5: 张艳玲, 刘建军, 许华, 等. Complexin-1/2 过表达重组载体对阿尔茨海默病 小鼠记忆损伤的实验研究[J]. 中国临床解剖学杂志, 2016, 34(2): 191-197. 王玉强, 蒋杰, 于沛, 孙业伟, 王林达, 张在军, 一种硝酮类化合物及其制备 方法和在制药中的应用,中国国家发明专利授权发明专利号 ZL200810027706.1。 2. 王玉强, 蒋杰, 于沛, 孙业伟, 王林达, 张在军, 一种硝酮类化合物及其制备 方法和在制药中的应用,美国专利: US 8,404,688。 王玉强,蒋杰,于沛,孙业伟,王林达,张在军,一种硝酮类化合物及其制备 方法和在制药中的应用, 德国专利号: 602009016857.6。 4. 王玉强, 蒋杰, 于沛, 孙业伟, 王林达, 张在军, 一种硝酮类化合物及其制备 知识产权名称 方法和在制药中的应用,英国专利号: 2265591。 5. 王玉强, 蒋杰, 于沛, 孙业伟, 王林达, 张在军, 一种硝酮类化合物及其制备 方法和在制药中的应用, 法国专利号: 2265591。 6. 王玉强, 蒋杰, 于沛, 孙业伟, 王林达, 张在军, 硝酮类化合物及其制备方法 和医药应用,日本专利号:5479455。 王玉强, 张在军, 孙业伟, 于沛, 张高小, 徐立朋, 穿心莲内酯衍生物 AL-1 在 制备预防和治疗神经退行性疾病药物中的应用,中国国家发明专利授权号:

	ZL201310391065.9。
推广应用情况	在本项目实施过程中,建立了可用于研究神经系统重大疾病(包括 AD、PD、中风
	等)机制和药物研发相关的多个技术平台,如多组学技术平台(转录组学、蛋白质
	组学、代谢组学等)、分子成像(如双光子成像、质谱成像)、神经行为学、神经
	药理毒理学等,这些成熟的技术平台已被多家机构使用,包括北京大学深圳研究生
	院、深圳大学、澳门大学、上海交通大学附属第六人民医院、深圳市橄榄生物医药
	科技有限公司)。